zyklische Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Zeige: Es sei p eine Primzahl. Die Automorphismengruppe Aut [mm] (\IZ/p\IZ) [/mm] der zyklischen Gruppe [mm] \IZ/p \IZ [/mm] ist eine zyklische Gruppe der Ordnung p-1 (mit der Komposition von Abbildungen als Verknüpfung). |
Wie zeigt man sowas? zyklisch heißt durch 1 element erzeugt und jede zyklische Gruppe ist etweder isomorph zu [mm] \IZ [/mm] oder zu [mm] \IZa [/mm] := [mm] \IZ [/mm] / a [mm] \IZ [/mm] mit einer eindeutig bestimmten positiven ganzen Zahl a. Anscheinend muss ich irgendwie diesen Satz bei meinem Beweis benutzen, aber wie, wie geht der Beweis? Und was heißt "der Ordnung p-1" ?
Ich weiß ich stelle dumme Fragen, tut mir leid, aber ich kann das halt nicht.
|
|
|
|
> Zeige: Es sei p eine Primzahl. Die Automorphismengruppe Aut
> [mm](\IZ/p\IZ)[/mm] der zyklischen Gruppe [mm]\IZ/p \IZ[/mm] ist eine
> zyklische Gruppe der Ordnung p-1 (mit der Komposition von
> Abbildungen als Verknüpfung).
Hallo,
Du suchst jetzt also sämtliche Gruppenhomomorphismen von [mm] \IZ/p\IZ [/mm] auf [mm] \IZ/p\IZ.
[/mm]
Da [mm] \IZ/p\IZ [/mm] zyklisch ist und 1 ein erzeugendes Element sind die gesuchten Homomorphismen durch ihren Wert auf 1 eindeutig bestimmt.
Damit Dein Gruppenhomomorphismus surjektiv ist, mußt Du die 1 auf ein erzeugendes Element von [mm] \IZ/p\IZ [/mm] abbilden.
Wenn Du weißt, wieviele erzeugende Elemente es in [mm] \IZ/p\IZ [/mm] gibt, weißt Du wieviele und welche Automorphismen von [mm] \IZ/p\IZ [/mm] auf [mm] \IZ/p\IZ [/mm] es gibt.
Jetzt zeigst Du dann, daß diese Automorphismen eine zyklische Gruppe bilden (bzgl. der Addition v. Abbildungen)
> Und was heißt "der Ordnung p-1" ?
Daß die gesuchte zyklische Gruppe p-1 Elemente hat.
Gruß v. Angela
|
|
|
|