www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Bolzano-Weierstraß
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Bolzano-Weierstraß

Satz von Bolzano-Weierstraß

Jede beschränkte Folge in $ \IR $ (oder $ \IC $) hat einen Häufungspunkt.


Beweis für $ \IR $

Sei $ (a_n)_{n\in\IN} $ eine beschränkte Folge. Konstruiere eine Intervallschachtelung  $ [I_k, J_k] $, s.d. $ \forall k $:

$ a_n\in[I_k,J_k]\mbox{ für unendlich viele n und } a_n\le J_k\mbox{ für fast alle n}\in\IN.\mbox{ }(\ast) $

Da $ (a_n)_{n\in\IN} $ beschränkt ist, folgt $ \exists K>0:|a_n|\le K\mbox{ }\forall n\in\IN $. Das impliziert für alle $ n\in\IN: a_n\in[-K,K]=:[I_1,J_1] $.

Sei nun $ [I_k,J_k] $ mit $ (\ast) $ gegeben. Konstruiere dann $ [I_{k+1},J_{k+1}] $ wie folgt:
Sei $ M $ Mittelpunkt von $ [I_k,J_k] $. Dann enthält $ [I_k,M] $ oder $ [M,J_k] $ unendlich viele $ a_n $. Setze

$ [I_k,J_k]:= \begin{cases}
     [I_k,M] & \text{falls } a_n \le M\mbox{ für fast alle n} \\
     [M,J_k] & \text{sonst}
   \end{cases} $
Dann enthält $ [I_{k+1},J_{k+1}] $ unendlich viele $ a_n $ und $ a_n\le I_{k+1} $ für fast alle $ n\in\IN $ per constructionem. Für die Längen der Intervalle definiert vermöge $ l:\{[a,b]|a,b\in\IR\}\to\IR $ mit $ l([a,b])=b-a $ gilt:
$ l([I_{k+1},J_{k+1}])=\frac{1}{2}l([I_{k},J_{k}]) $

$ \Rightarrow $ $ l([I_k,J_k])=\frac{1}{2^{k-1}}\cdot l([I_1,J_1]) $ $ \Rightarrow $ $ l([I_k,J_k])\to 0\mbox{ für }k\to\infty $. Also sind die $ [I_k,J_k] $ Intervallschachtellung.
Es existiert also ein $ p\in\IR $ mit $ p\in[I_k,J_k]\mbox{ } \forall k\in\IN $. Zu $ \epsilon>0 $ wähle $ k\in\IN $ mit $ ]p-\epsilon,p+\epsilon[\supseteq[I_k,J_k] $. Da $ [I_k,J_k] $ unendlich viele $ a_n $ enthält, folgt dies auch für $ ]p-\epsilon,p+\epsilon[ $. Es wurde also gezeigt:

$ \forall \epsilon>0 $ existieren unendlich viele $ n\in\IN $: $ |a_n-p|<\epsilon $.

Daraus folgt direkt: $ p $ ist Häufungspunkt.

($ p $ ist sogar größter Häufungspunkt! Denn existierte ein größerer Häufungspunkt, wäre $ a_n\le J_k\mbox{ für fast alle n}\in \IN $ für hinreichend große $ k $ verletzt.)


Beispiele

Beispiel 1:
$ (a_n) $ definiert durch $ a_n:=(-1)^n $. Offensichtlich ist $ |(-1)^n|\le1\mbox{ }\forall n\in\IN $. Also hat $ (a_n) $ mindestens einen Häufungspunkt bzw. konvergente Teilfolgen.
In der Tat existieren sogar genau zwei Häufungspunkte $ -1 $ und $ 1 $.

Beispiel 2:
$ (a_n) $ definiert durch $ a_n:=\frac{n+1}{n} $. Dann ist $ \left|\frac{n+1}{n}\right|=1+\frac{1}{n}\le2\mbox{ }\forall k\in\IN $, denn $ \frac{1}{n} $ ist monoton fallend, was die Abschätzung $ \left|\frac{1}{n}\right|\le\frac{1}{1}=1\mbox{ }\forall n $ impliziert.
Also besitzt $ \left(\frac{n+1}{n}\right)_{n\in\IN} $ mindestens einen Häufungspunkt.
Man sieht in diesem Beispiel leicht ein, dass genau ein Häufungspunkt $ 1 $ existiert.


Bemerkung

Man kann zudem folgende Formulierung des Satzes (Bolzano-Weierstraß) zeigen (vgl. dazu Amman, Escher (2006)):

Jede beschränkte Folge in $ \mathbb{K}^m $ besitzt eine konvergente Teilfolge bzw. einen Häufungspunkt.


Literatur

isbn3764377550 H. Amman/J. Escher: Analysis I

Erstellt: Fr 13.02.2015 von Ladon
Letzte Änderung: Sa 14.02.2015 um 12:02 von Ladon
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]