www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - H-methode
H-methode < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

H-methode: Aufgabe zur H-methode
Status: (Frage) beantwortet Status 
Datum: 12:44 Mo 05.01.2009
Autor: xaidoos

Aufgabe
Steigung der Parabel mit der Gleichung f(x) = 2x² im Punkt (1.2|3.466).
Formuliere eine Allgemeine Aussage.

m= [mm] \bruch{f(xp+h)-(xp)}{h} [/mm] = [mm] \bruch{2(xp+h)²-2(xp)²}{h} [/mm] = [mm] \bruch{2xp²+2*2xph+2h²-2xp²}{h}=\bruch{ 2*2xph+2h²}{h}=\bruch{h(2*2xp+2h}{h} [/mm] = 4xp+2h
ist das Richtig ?
und wenn ja muss ich doch nur noch 1.2 einsetzen damit ich die steigung im Punkt habe odeR ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
H-methode: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Mo 05.01.2009
Autor: M.Rex

Hallo

Beachte, dass du die Steigung erst dann hast, wenn du [mm] h\to0 [/mm] laufen lässt.

Also:

[mm] m=\red{\limes_{h\rightarrow0}}\bruch{f(xp+h)-(xp)}{h} [/mm]
[mm] =\limes_{h\rightarrow0}\bruch{2(x_{p}+h)²-2x_{p}^{2}}{h} [/mm]
[mm] =\limes_{h\rightarrow0}\bruch{2(x_{p}^{2}+2x_{p}h+h²)-2x_{p}^{2}}{h} [/mm]
[mm] =\limes_{h\rightarrow0}\bruch{2x_{p}^{2}+4x_{p}h+2h²-2x_{p}^{2}}{h} [/mm]
[mm] =\limes_{h\rightarrow0}\bruch{4x_{p}h+2h²}{h} [/mm]
[mm] =\limes_{h\rightarrow0}\bruch{h(4x_{p}+2h)}{h} [/mm]
[mm] =\limes_{h\rightarrow0}(4x_{p}+2h) [/mm]
Jetzt kannst du auch ohne Probleme h=0 setzen, da das h im nenner herauskürzbar geworden ist.

Also:

[mm] m=\limes_{h\rightarrow0}\bruch{2(x_{p}+h)²-2x_{p}^{2}}{h} [/mm]
[mm] =\limes_{h\rightarrow0}(4x_{p}+2h) [/mm]
[mm] =4x_{p} [/mm]

Wenn du jetzt einen Punkt gegeben hast, kannst du dann natürlich die Steigung bestimmen, indem du die x-Koordinate in die zu f(x)=2x² gehörende "Steigungsfunktion" m(x)=4x einsetzt

Marius

Bezug
                
Bezug
H-methode: Frage?
Status: (Frage) beantwortet Status 
Datum: 15:40 Di 06.01.2009
Autor: xaidoos

Könnte mir jemand noch eine Aufgabe geben zum lernen ?

Bezug
                        
Bezug
H-methode: Aufgabe
Status: (Antwort) fertig Status 
Datum: 15:47 Di 06.01.2009
Autor: Roadrunner

Hallo xaidoos!

Aufgabe
Bestimme die Steigung der Funktion $f(x) \ = \ [mm] x^3-1$ [/mm] an der Stelle [mm] $x_0 [/mm] \ = \ 2$ .


Gruß vom
Roadrunner


Bezug
                                
Bezug
H-methode: Richtig ?
Status: (Frage) beantwortet Status 
Datum: 16:16 Di 06.01.2009
Autor: xaidoos

f(x) = [mm] \bruch{(2+h)³-1-(2)³-1}{h} [/mm] = [mm] \bruch{8+4h+2h²+4h+2h²+h³-1-8-1}{h}= \bruch{8h+4h²+h³-2}{h}= \bruch{h(8+4h+h²)-2}{h} [/mm] = 8+4h+h²-2 = 6+4h+h² [mm] \limes_{0\rightarrow\infty} [/mm] f(x) = 6
richtig ?

Bezug
                                        
Bezug
H-methode: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Di 06.01.2009
Autor: MathePower

Hallo xaidoos,

> f(x) = [mm]\bruch{(2+h)³-1-(2)³-1}{h}[/mm] =


Das muß doch so lauten:

[mm]f(x) = \bruch{(2+h)³-1-\left\red{(} \ (2)³-1 \right\red{)}}{h}[/mm]


> [mm]\bruch{8+4h+2h²+4h+2h²+h³-1-8-1}{h}= \bruch{8h+4h²+h³-2}{h}= \bruch{h(8+4h+h²)-2}{h}[/mm]


Den Ausdruck [mm]\left(2+h\right)^{3}[/mm] kann man mit dem binomischen Lehrsatz berechnen.


> = 8+4h+h²-2 = 6+4h+h² [mm]\limes_{0\rightarrow\infty}[/mm] f(x) = 6
>  richtig ?


Das mußt Du nochmal nachrechnen.


Gruß
MathePower

Bezug
                                                
Bezug
H-methode: nun ?
Status: (Frage) beantwortet Status 
Datum: 17:04 Di 06.01.2009
Autor: xaidoos

f(x)= [mm] \bruch{(2+h)³-1-((2)³-1)}{h} [/mm] = [mm] \bruch{2³+3*2h+h³-1-(8-1)}{h} [/mm] = [mm] \bruch{8+6h+h³-8}{h} [/mm] = [mm] \bruch{6h+h³}{h} [/mm] = [mm] \bruch{h(6+h²)}{h} [/mm] = 6+h²

[mm] \limes_{0\rightarrow\infty} [/mm]  6   nun =?

Bezug
                                                        
Bezug
H-methode: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Di 06.01.2009
Autor: MathePower

Hallo xaidoos,

> f(x)= [mm]\bruch{(2+h)³-1-((2)³-1)}{h}[/mm] =
> [mm]\bruch{2³+3*2h+h³-1-(8-1)}{h}[/mm] = [mm]\bruch{8+6h+h³-8}{h}[/mm] =
> [mm]\bruch{6h+h³}{h}[/mm] = [mm]\bruch{h(6+h²)}{h}[/mm] = 6+h²
>  
> [mm]\limes_{0\rightarrow\infty}[/mm]  6   nun =?


Stimmt immer noch nicht. [notok]

Das scheitert daran, daß [mm]\left(2+h\right)^{3}[/mm] nicht richtig ausmultipliziert wurde.

Wenn Du das nach dem binomischen Lehrsatz nicht machen kannst,
dann multipliziere doch einfach [mm]\left(2+h\right)*\left(2+h\right)*\left(2+h\right)[/mm] aus.


Gruß
MathePower

Bezug
                                                                
Bezug
H-methode: nun?
Status: (Frage) beantwortet Status 
Datum: 17:29 Di 06.01.2009
Autor: xaidoos

f(x) = [mm] \bruch{8+12h+6h²+h³-8}{h}= \bruch{h(12+6h²)}{h}= [/mm] 12+6h²
[mm] \limes_{h\rightarrow\0} [/mm] (12+6h²) = 12+0  

Bezug
                                                                        
Bezug
H-methode: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Di 06.01.2009
Autor: MathePower

Hallo xaidoos,

> f(x) = [mm]\bruch{8+12h+6h²+h³-8}{h}= \bruch{h(12+6h²)}{h}=[/mm]

Hier ist etwas verlorengegangen:

[mm]\bruch{8+12h+6h²+h³-8}{h}= \bruch{h(12+6h^{\red{1}}\red{+h^{2}})}{h}=12+6h+h^{2}[/mm]


> 12+6h²
> [mm]\limes_{h\rightarrow\0}[/mm] (12+6h²) = 12+0  


Das Ergebnis stimmt. [ok]


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]